Сложе́ние (прибавле́ние) — одна из основных бинарных математических операций (арифметических действий) двух аргументов (слагаемых), результатом которой является новое число (сумма), получаемое увеличением значения первого аргумента на значение второго аргумента. То есть каждой паре элементов
(
a
,
b
)
{displaystyle (a,b)}
из множества
A
{displaystyle A}
ставится в соответствие элемент
c
=
a
+
b
{displaystyle c=a+b}
, называемый суммой
a
{displaystyle a}
и
b
{displaystyle b}
. Это одна из четырёх элементарных математических операций арифметики. Приоритет её в обычном порядке операций равен приоритету вычитания, но ниже, чем у возведения в степень, извлечения корня, умножения и деления. На письме сложение обычно обозначается с помощью знака «плюс»:
a
+
b
=
c
{displaystyle a+b=c}
.
Сложение возможно, только если оба аргумента принадлежат одному множеству элементов (имеют одинаковый тип). Так, на картинке справа запись
3
+
2
{displaystyle 3+2}
обозначает три яблока и два яблока вместе, что в сумме дает пять яблок. Но нельзя сложить, например, 3 яблока и 2 груши.
Используя систематические обобщения, сложение можно определить для абстрактных величин, таких как целые числа, рациональные числа, вещественные числа и комплексные числа и для других абстрактных объектов, таких как векторы и матрицы.
У сложения есть несколько важных свойств (например, для
A
=
{displaystyle A=}
R
{displaystyle mathbb {R} }
) (см. Сумма):
Коммутативность:
a
+
b
=
b
+
a
,
∀
a
,
b
∈
A
{displaystyle a+b=b+a,quad forall a,bin A}
Ассоциативность:
(
a
+
b
)
+
c
=
a
+
(
b
+
c
)
,
∀
a
,
b
,
c
∈
A
{displaystyle (a+b)+c=a+(b+c),quad forall a,b,cin A}
Дистрибутивность:
x
⋅
(
a
+
b
)
=
(
x
⋅
a
)
+
(
x
⋅
b
)
,
∀
a
,
b
∈
A
.
{displaystyle xcdot (a+b)=(xcdot a)+(xcdot b),quad forall a,bin A.}
Прибавление
0
{displaystyle 0}
(нулевого элемента) даёт число, равное исходному:
x
+
0
=
0
+
x
=
x
,
∀
x
∈
A
,
∃
0
∈
A
.
{displaystyle x+0=0+x=x,quad forall xin A,quad exists 0in A.}
Сложение очень маленьких чисел понятно даже детям; простейшая задача,
1
+
1
{displaystyle 1+1}
, может быть решена пятимесячным ребёнком и даже некоторыми животными[уточнить]. В начальной школе учат считать в десятичной системе счисления и постепенно переходят к более сложным задачам.
Известны различные устройства для сложения: от древних абаков до современных компьютеров.